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Abstract. We present a stability analysis of the 2D t-t′ Hubbard model on a square lattice for various
values of the next-nearest-neighbor hopping t′ and electron concentration. Using the free energy expression,
derived by means of the flow equations method, we have performed numerical calculation for the various
representations under the point group C4ν in order to determine at which temperature symmetry broken
phases become more favorable than the symmetric phase. A surprisingly large number of phases has been
observed. Some of them have an order parameter with many nodes in k-space. Commonly discussed types
of order found by us are antiferromagnetism, dx2−y2 -wave singlet superconductivity, d-wave Pomeranchuk
instability and flux phase. A few instabilities newly observed are a triplet analog of the flux phase, a
particle-hole instability of p-type symmetry in the triplet channel which gives rise to a phase of magnetic
currents, an s∗-magnetic phase, a g-wave Pomeranchuk instability and the band splitting phase with p-wave
character. Other weaker instabilities are found also. A comparison with experiments is made.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 74.20.-z Theories and models of superconducting state –
74.20.Rp Pairing symmetries (other than s-wave)

1 Introduction

In recent years the two-dimensional (2D) Hubbard model
has been used [1,2] as the simplest model which maps the
electron correlations in the copper-oxide planes of high-
temperature superconductors since experimental data
suggest that superconductivity in cuprates basically orig-
inates from the CuO2 layers [3]. Although in the high-
temperature cuprate superconductors electron-electron
interactions are strong some important features of these
systems (in particular, antiferromagnetic and d-wave su-
perconducting instabilities) are captured already by the
2D Hubbard model at weak to moderate Coulomb cou-
pling.

Apart from the antiferromagnetism and dx2−y2-wave
superconductivity above mentioned (for review see [2,4]
and references therein), a few other instabilities related
to symmetry-broken states [5–14], and truncation of the
Fermi surface [15] in the 2D t-t′ Hubbard model with next-
nearest-neighbor hopping t′ have been reported. One of
these phases is the staggered flux phase of singlet type
with d-wave character which occurs in the particle-hole

a Current address: Département de physique and Cen-
tre de recherche sur les propriétés électroniques de matéri-
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channel and breaks translational and time-reversal sym-
metries. The singlet flux phase has been discovered in
the mean-field treatments of the 2D Hubbard model by
Kotliar [5], and independently by Affleck and Marston [6].
It has been discussed by Nayak [16] and Chakravarty
et al. [17] as a d-density wave state which may coexist
with d-wave superconductivity. Recently, a triplet analog
of the staggered flux phase has been observed [14] also
in the 2D t-t′ Hubbard model in certain regions of the
parameters.

Another instability in the 2D t-t′ Hubbard model is a
d-wave Pomeranchuk instability breaking the tetragonal
symmetry of the Fermi surface, i.e. a spontaneous defor-
mation of the Fermi surface reducing its symmetry to or-
thorhombic. It has been recently observed for small values
of t′ from renormalization group calculations by Halboth
and Metzner [7]. They argued that the Pomeranchuk in-
stability occurs more easily if the Fermi surface is close to
the saddle points of the single particle dispersion (Van
Hove filling) with a sizable t′ (reducing nesting which
leads to antiferromagnetism). However, within their tech-
nique it is difficult to compare the strength of the Fermi
surface deformation with other instabilities and to con-
clude which one dominates. The authors of reference [12]
have investigated the interplay of d-density wave and
Fermi surface deformation tendencies with those towards
d-wave pairing and antiferromagnetism by means of a
similar temperature-flow renormalization group approach.
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They have found that the d-wave Pomeranchuk insta-
bility is never dominant in the 2D t-t′ Hubbard model
(even under the conditions mentioned above). At the same
time, the dx2−y2-wave Pomeranchuk instability has been
observed [13] to be one of the strongest instability in
the 2D Hubbard model by means of the flow equations
method, but these calculations have some limitations at
low temperatures (see Sect. 2).

On the other hand, Vollhardt et al. [18] showed that
t′-hopping destroys antiferromagnetic nesting instabil-
ity at weak interactions in two and three dimensions,
and supports the stabilization of metallic ferromagnetism
in infinite dimensions away from half-filling. Therefore,
one may expect also the stabilization of ferromagnetism
by a sizable t′ in two dimensions. Indeed, in the t-t′
Hubbard model on a 2D square lattice at week to moder-
ate Coulomb coupling, a projection quantum Monte Carlo
calculation with 20 × 20 sites and the T -matrix tech-
nique [9], a generalized random phase approximation in-
cluding particle-particle scattering [8] point towards a fer-
romagnetic ground state for large negative values of t′ in
a density range around the Van Hove filling. Similar ten-
dencies have been found by the authors of reference [10]
within the renormalization group and parquet approaches.
Honerkamp and Salmhofer recently studied [11] the sta-
bility of this ferromagnetic region at finite temperatures
by means of the temperature-flow renormalization group
technique. They have found that ferromagnetic instabil-
ity is the leading one at t′ < −0.33t and the Van Hove
filling with critical temperatures depending on the value
of t′. When the electron concentration is increased slightly
above the Van Hove filling, the ferromagnetic tendencies
get cut off at low temperatures and a triplet p-wave super-
conducting phase dominates. However, they did not con-
sider the Pomeranchuk instability and other ones apart
from antiferromagnetism, d- and p-wave superconductiv-
ity and ferromagnetism.

Other instabilities recently found in the 2D Hubbard
model are an “insulating spin liquid state” [15] and “band
splitting” phase [13]. Insulating spin liquid phase is the
state with truncated Fermi surface and unbroken trans-
lational symmetry. It is insulating due to the vanishing
local charge compressibility, and a spin liquid because of
the spin gap arising from the pairing correlations. Band
splitting phase is a particle-hole instability of singlet type
with p-type symmetry which has been found [13] close to
half-filling. It leads to a splitting into two bands, and may
lead to an energy gap in the charge excitations spectrum.

In the present paper, which is the continuation and ex-
tended version of our previous work [14], we investigate the
possible phases of the 2D t-t′ Hubbard model on a square
lattice with the help of the free energy expressions derived
in reference [13] by means of the flow equations method.
In addition to the short paper [14] we present a summary
of the formalism, and give some details of numerical cal-
culations as well as consider the case of arbitrary electron
concentrations. The phases found by us are discussed in
more details. We find all commonly discussed states as well
as a few new possible phases. We determine in which re-

gions various symmetry broken phases are more favorable
than the symmetric (i.e. normal) state. This is done for
various types of symmetry breaking independently, that
is if no other symmetry breaking would be present. One
phase may suppress another phase. To which extend two
order parameters can coexist with each other is a question,
which has to be investigated in the future. The paper has
the following structure. In Section 2 we summarize the
formalism, and represent the details of numerical calcula-
tions. In Section 3 the numerical results of our stability
analysis are given, and the possible phases of the model
are discussed. Section 4 is devoted to the conclusions.

2 Formalism and numerics

We consider the t-t′ Hubbard model

H =
∑
kσ

εkc†kσckσ

+
1
N

∑
k1k′

1
k2k′

2

V (k1,k2,k′
1,k

′
2)c

†
k1↑ck′

1↑c
†
k2↓ck′

2↓, (1)

where εk is the Bloch electron energy with the momen-
tum k, c†kσ(ckσ) is the creation (annihilation) operator for
the electrons with spin projection σ ∈ {↑, ↓}, and initially
V (k1,k2,k′

1,k
′
2) = Uδk1+k2,k′

1+k′
2

is the local Coulomb re-
pulsion of two electrons of opposite spins, N is the number
of lattice points, lattice spacing equals unity.

For a square lattice the single particle dispersion has
the form

εk = −2t(coskx + cos ky) − 4t′ cos kx cos ky, (2)

where t is the hopping integral of electrons between near-
est neighbors of the lattice, and t′ is the next-nearest-
neighbor hopping integral. The spectrum (2) contains Van
Hove singularities in the density of states at the energy
εV H = 4t′ related to the saddle points of the Fermi sur-
face at k = (0,±π) and (±π, 0). For t′ = 0 and half-filling
the Fermi surface is nested εk+Q = −εk with Q = (π, π),
which leads to an antiferromagnetic instability for U > 0.
The nesting is removed for t′/t �= 0.

We are mainly interested in the following channels

VB(k,q) = V (k,−k,q,−q), (3)
VH(k,q) = V (k,q,k,q), (4)
VF (k,q) = V (k,q,q,k), (5)
VA(k,q) = V (k,q + Q,q,k + Q), (6)
VC(k,q) = V (k,q + Q,k + Q,q), (7)
VY (k,q) = V (k,Q − k,q,Q − q). (8)

VB describes the coupling of electron-pairs, VH and VF

are interactions showing up in Fermi-liquid theory and
describe (homogeneous) magnetism and Pomeranchuk-
instabilities, channels VA and VC describe antiferromag-
netism and charge density waves with wave-vector Q as
well as some other types of ordering. VY describes elec-
tron pairs with wave-vector Q. These channels are kept
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channel v1 Vk,q fk

pp si/tr 0 +1 V
(2)

B (k,q) f(β(εk − µ), β(µ − εk))

ph si 0 +1 2V
(2)

H (k,q) − V
(2)

F (k,q) f(β(εk − µ), β(εk − µ))

ph tr 0 −1 −V
(2)

F (k,q) f(β(εk − µ), β(εk − µ))

pp si/tr q± +1 V
(2)

Y (k,q) f(β(εk − µ), β(µ − εk+Q))

ph si q± +1 2V
(2)

C (k,q) − V
(2)

A (k,q) f(β(εk − µ), β(εk+Q − µ))

ph tr q± −1 −V
(2)

A (k,q) f(β(εk − µ), β(εk+Q − µ)).

(13)

within our approach, but finally the effective interaction
VY is rather weak. We apply the flow equation method
[19,20] to this Hamiltonian, that is we perform a con-
tinuous unitary transformation as a function of a flow
parameter l which brings the Hamiltonian into a mean-
field form,

dH(l)
dl

= [η(l), H(l)], η(l) = [H(l), Hr(l)]. (9)

η(l) is the generator of the unitary transformation.
Hr(l) is obtained from the interaction part of the
transformed Hamiltonian H(l) by V r(k1,k2,k′

1,k
′
2, l) =

reli(k1,k2,k′
1,k

′
2)V (k1,k2,k′

1,k
′
2, l), where reli is the

elimination factor which indicates how urgently
V (k1,k2,k′

1,k
′
2, l) should be eliminated. We choose

reli(k1,k2,k′
1,k

′
2) =

∑
α(vα

k1
+ vα

k2
− vα

k′
1
− vα

k′
2
)2 with

vα
k = −vα

−k = vα
k+Q. This condition guarantees, that

those interactions we wish to keep have reli = 0 and are
kept, but the other ones have reli > 0 and thus will be
eliminated. In this way we eliminate the fluctuations
around the molecular-field type behavior and keep finally
an interaction for which the molecular-field treatment is
exact.

Keeping these interactions in second order in the
Hubbard coupling U by means of the flow equation
method [20] the Hamiltonian is transformed into an effec-
tive one of molecular-field type which contains products
of the biquadratic terms c†c, c†c†, and cc with total
momenta 0 and Q, and depends only on two independent
momenta. The second order effective interactions are
V

(2)
B = WB, V

(2)
F = WF , V

(2)
H = V

(2)
F + WH , V

(2)
A =

WA, V
(2)
C = V

(2)
A + WC , V

(2)
Y = WY , with

Wi =−U2

N

∑
p1p2

(n̂p2 − np1)(εp2 + ε̂p1 − [εa + εb]/2)
(εp2 + ε̂p1 − [εa + εb]/2)2 + 1/4(εa + εb)2

× δp1+p2,r, (10)

where i = B, F, H, A, C, Y , nk is the Fermi distribution
function, n̂p2 = 1−np2, ε̂p1 = εp1 for i = F, A, and n̂p2 =
np2 , ε̂p1 = −εp1 for i = B, H, C, Y respectively [13]. The
factors εa, εb, and r are listed in Table 1. Then, the free
energy has the form

βF =
1
N

∑
kq

βU

(
v1 +

U

t
Vk,q

)
∆∗

k∆q +
∑
k

fk∆∗
k∆k

=
∑
kq

(
U

t
Ak,q +

U2

t2
Bk,q + δk,q

) √
fk∆∗

k

√
fq∆q,

(11)

Table 1. The factors εa, εb, and r in equation (10).

i εa εb r
B εk − εq εq − εk k + q
F εk + εq εk + εq k + q
H εk − εq εk − εq k − q
A εk + εq+Q εk+Q + εq k + q + Q
C εk − εq εk+Q − εq+Q k − q
Y εk − εQ−q εq − εQ−k k + q− Q

where the first term of the middle part of equation (11) is
the energy contribution and the second term is the entropy
contribution, and

Ak,q =
v1βt

N
√

fkfq

, Bk,q =
βtVk,q

N
√

fkfq

, (12)

with β = 1/(kBT ), T is the temperature, Vk,q is effec-
tive second-order interaction (the factor U2/t has been
extracted from it), v1 = ±1 is the sign with which the
first order contribution enters into the effective interac-
tion, fk is an entropy coefficient, and ∆k are the or-
der parameters. For example, 〈ckσc−kσ′ 〉 = (σy)σσ′∆s

k +∑
α(σyσα)σσ′∆tα

k , where σα is a Pauli spin matrix (α =
x, y, z), and ∆s

k (∆tα
k ) is the singlet (triplet) amplitude.

An expression similar to equation (11) is obtained for
particle-hole channels with the order parameters ν instead
of ∆. In this case, for example, we have 〈c†kσck+Qσ′〉 =
νs
kδσ,σ′ +

∑
α νtα

k (σα)σσ′ .
In total we consider four channels, two particle-hole

and two particle-particle ones, since the total momentum
can be 0 and Q. In all cases we distinguish between singlet
and triplet excitations, and in the channels corresponding
to the total momentum Q we distinguish also between
∆k+Q = ±∆k and νk+Q = ±νk respectively. Therefore,
we introduce the following notations: ph denotes particle-
hole channel, si (tr) denotes singlet (triplet), q± corre-
sponds to ∆k+Q = ±∆k and νk+Q = ±νk respectively,
otherwise 0.

In equation (11) and the analogous expressions for
particle-hole channels one has

see (13) above.

The entropy coefficient function is

f(x, y) =
x − y

ex − ey
(ex + 1)(ey + 1). (14)

We start from the symmetric state and investigate
whether this state is stable against fluctuations of the or-
der parameters ∆ and ν. As soon as a non-zero ∆ or ν
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yields a lower free energy in comparison with the symmet-
ric state with all vanishing ∆ and ν, then the symmetric
state is unstable and the system will approach a symmetry
broken state. This indicates a phase transition. Of course,
one phase may suppress another phase. To which extend
two order parameters can coexist with each other is a ques-
tion, which has to be investigated. But this problem lies
outside the scope of the present paper.

We performed numerical calculation on a square lattice
with 24 × 24 points in the Brillouin zone for the various
representations under the point group C4ν = 4mm. This
group consists of the following symmetry elements: mir-
ror reflections with respect to the x- and y-axes and the
lines y = ±x, a fourfold rotation about the axis which
is perpendicular to x-y-plane. The representations of the
even-parity states are one-dimensional. We denote them
by s+ = s1, s− = g = sxy(x2−y2), d+ = dx2−y2 , d− = dxy.
The odd-parity representation is two-dimensional, here
simply denoted by p.

Initially, such numerical calculations have been per-
formed in references [13,21], but they were sensitive to the
lattice size at low temperatures, specially for the particle-
hole channels. The main problem is that the wave-vector
space contributing essentially to the order parameter is
very small at low temperatures as a result of exponential
divergence of the entropy coefficients fk. As we consider
the stability of the symmetric state with respect to a sym-
metry broken phase (thus we are interested in small fluc-
tuations of free energy (11) around zero) and the energy
contribution to equation (11) changes slowly, the entropy
contribution has to change slowly also. Rewriting equa-
tion (11) in terms of new renormalized order parameter
∆̃k =

√
fk∆k, we conclude that the averaging 〈 1

fk
〉 has to

be performed in k-space when we are calculating entropy
coefficients. For the value of the inverse entropy coeffi-
cient 1/fk0 we take the average value of the coefficients
over Na × Na lattice points of a grid with center at the
k0-point and the spacing 2π/(Na

√
N). The number Na

of points in momentum space is inversely proportional to
temperature and

√
N , all together these points cover the

Brillouin zone. A similar procedure is applied to the chem-
ical potential calculation. One should also perform the
averaging in determination of effective interactions, but
it would take much more time. We have checked the size
effects in the framework of such an improved scheme, per-
forming some calculations also for 16 × 16 and 32 × 32
lattices, and found that the differences are very small and
unessential. Although size effects increase at low temper-
atures in the low density region, they do not touch and
change the leading instabilities essentially.

For each channel the eigenvalues of the matrix U
t A +

U2

t2 B have to be determined. Whenever the lowest eigen-
value λ (i.e. the most negative) equals −1, then a criti-
cal Tc/t or (U/t)c is reached. For the s+ representation
(in case of the effective interactions VA, VC , VY only for
νk+Q = +νk, ∆k+Q = +∆k) one has to find the solution
by iterating the eigenvalue equation as a function of U/t.
In the case of all other representations the A-term does not
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Fig. 1. Temperature phase diagram of the 2D t-t′ Hubbard
model for n = 1, t′ = 0. Chemical potential µ = 0. SC stands
for superconductivity, FP for flux phase, BS for band splitting,
PI for Pomeranchuk instability, AF for antiferromagnetism.
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Fig. 2. Temperature phase diagram of the 2D t-t′ Hubbard
model for n = 0.94, t′ = 0. Chemical potential varies between
µ/t = −(0.097÷0.146). Notations are the same as in Figure 1.

contribute. Therefore then we determine the lowest eigen-
value λ of the matrix B, and obtain (U/t)c = 1/

√−λ.

3 Possible phases of the model

We start from t′ = 0 and half-filling n = 1 (see Fig. 1). As
expected in this case the leading instability is the antifer-
romagnetic one, it appears in the ph tr channel with q+

symmetry and s+ wave character. As we leave half-filling
the antiferromagnetism becomes weaker (Fig. 2) and dis-
appears at hole doping δ ≡ 1 − n ∼ 0.08. As soon as the
system is doped the nesting is reduced, since there are no
longer points on the Fermi surface connected by the wave-
vector Q and we observe a reentrant behavior. The sec-
ond order contribution to the antiferromagnetic channel
suppresses antiferromagnetism (at least in the s-channel).
Therefore antiferromagnetism disappears at larger values
of U/t. Strong coupling calculations yield a t − J-model
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in which the exchange coupling decreases like J = 4t2/U
for large U . Thus, our observation is remarkable, since we
work with a weak-coupling calculation, we obtain at in-
termediate couplings the same tendency as it is expected
at strong interactions although we do not reproduce the
Néel temperature behavior Tc ∼ t2/U . We take the de-
crease of the Néel temperature as an indication that the
calculation in second order in U yields reasonable results
even for intermediate values U ∼ 4t. For stronger cou-
plings higher order contributions will become important.
However, it is of interest to see which instabilities emerge
within our approximation for larger values of U/t, since
this gives a hint which types of ordering should be inves-
tigated for stronger couplings. Therefore, we discuss the
phase diagram obtained from the second order calculation
also for larger values U/t. It might be also that higher or-
der contributions neglected by us enhance the tendency
towards antiferromagnetism, and then it will decay not
so rapidly. Nevertheless, we emphasize that already sec-
ond order calculations give the qualitative description of
antiferromagnetism at intermediate couplings. In the lat-
ter context, we make a comparison of our results with
experimental data on some high-temperature cuprate su-
perconductors and transition metal compounds. As one
can see from Figure 1 antiferromagnetism disappears at
the temperature T ≈ 0.1t. Taking the estimation for the
hopping integral t ≈ 0.1 ÷ 0.3 eV, which is the realistic
values for transition metal and their compounds [22,23],
we obtain the Néel temperatures Tc = TN ≈ 110÷ 350 K.
These values agree with experimental data on half-filled
antiferromagnetic materials [24]. Let us consider also the
parent compound La2CuO4 of high-Tc cuprate systems
La2−xMxCuO4 (M = Sr, Ba, Ca). It is an antiferromag-
netic insulator with the Néel temperature TN ∼ 300 K and
half-filled d-band [25]. The electronic structure of these
systems is considered to be described by the three-band
Hubbard model (or d−p model) [25,26]. Some of the model
parameters deduced from photoemission and LDA calcu-
lations are Udd ≈ 6 ÷ 10 eV, and tpd ≈ 1 ÷ 1.5 eV [25].
The main features of the three-band Hubbard model can
be mapped onto the single-band Hubbard model, and
therefore one may describe [2] these compounds by the
Hubbard model (1). The values of the parameters U and t
of such a single-band Hubbard model are smaller in com-
parison with the corresponding parameters Udd and tpd

of the three-band extended Hubbard model, the Coulomb
repulsion U is specially reduced [27]. Then, taking the
values t ≈ 1 eV and U/t ≈ 4.7 ÷ 4.8 (it corresponds to
Tc/t ≈ 0.03÷0.02) we obtain the theoretical estimation of
the Néel temperature for La2CuO4 around TN ≈ 290 K,
that is very close to the experimental value.

The next instability is a Pomeranchuk instabil-
ity with dx2−y2-wave symmetry in the singlet channel
(namely ph si 0). The corresponding eigenvector signals a
deformation of the Fermi surface which breaks the point
group symmetry of the square lattice. At high temper-
atures the system has a tetragonal structure and an or-
thorhombic one at low temperatures. The dx2−y2 wave
Pomeranchuk instability dominates in the region of tem-
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Fig. 3. Temperature phase diagram of the 2D t-t′ Hubbard
model for t′ = −t/3, and n = 0.68 (the Van Hove filling).
Chemical potential varies between µ/t = −(1.317 ÷ 1.339).
TFP stands for triplet flux phase, M for magnetic particle-
hole instability in triplet channel, other notations are the same
as in Figure 1.
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Fig. 4. Temperature phase diagram of the 2D t-t′ Hubbard
model for t′ = −5t/12, and n = 0.90. Chemical potential varies
between µ/t = −(1.109 ÷ 0.985). Notations are the same as in
Figure 3.

perature T > 0.05t at small hole doping (δ < 0.2), and
for negative t′ ≥ −t/3 the Pomeranchuk instability dom-
inates in all temperature region at the electron concen-
trations around the Van Hove filling (see Figs. 3, 4). It
competes with other instabilities at t′ < −t/3 and the
electron concentrations around the Van Hove filling, and
it is not the leading one here (Fig. 5). But the d-wave
Pomeranchuk instability appears again to dominate at
large negative t′ < −t/3 in the region of electron density
above the Van Hove filling and below some doping (for
example, see Fig. 6); for the value t′ = −5t/12 this value
of doping equals δ ≈ 0.2. In agreement with the ideas of
reference [7] the instability is mainly driven by a strong at-
tractive interaction between particles on opposite corners
of the Fermi surface near the saddle points and a repulsive
interaction between particles on neighboring corners. To
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Fig. 5. Temperature phase diagram of the 2D t-t′ Hubbard
model for t′ = −5t/12, and n = 0.55 (the Van Hove filling).
Chemical potential varies between µ/t = −(1.666 ÷ 1.632).
Notations are the same as in Figure 3.
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Fig. 6. Temperature phase diagram of the 2D t-t′ Hubbard
model for t′ = −5t/12, and n = 0.70 (above the Van Hove
filling). Chemical potential varies between µ/t = −(1.493 ÷
1.380). Notations are the same as in Figure 3.

favor such a behavior we need a sizable t′ reducing an-
tiferromagnetic correlations. The critical temperature of
the d-wave Pomeranchuk instability occurrence decreases
with increasing hole doping, and at sufficiently large values
of doping and away from Van Hove filling this phase re-
quires strong couplings. Thus the hole doping suppresses
the tendency towards an orthorhombic distortion of the
Fermi surface (or lattice). The tendency towards a spon-
taneous deformation of Fermi surface with d-wave charac-
ter has been observed by Kampf and Katanin [28] to be
one of the leading instabilities in the 2D extended U -V -J
Hubbard model in the parameter range which is relevant
for underdoped cuprate systems. A similar Pomeranchuk
instability has been found by the authors of reference [29]
to be a characteristic of a nematic Fermi fluid [30] in two
dimensions.

Another possible phase is a particle-hole instability of
singlet type with staggered p-wave symmetry (ph si q− p).

0

0.05

0.1

0.15

0.2

0.25

0.3

3 4 5 6 7 8
U/t

Tc/t

SC d+
BS

Fig. 7. Temperature phase diagram of the 2D t-t′ Hubbard
model for t′ = −t/6, and n = 1.15. Chemical potential varies
between µ/t = −(0.001 ÷ 0.080). Notations are the same as in
Figure 3.

The corresponding quasiparticle energy spectrum is

Ek = ±
√

ε2
k + ε̃2

k (15)

where

ε̃k =
1
N

∑
q

[2VC(k,q) − VA(k,q)

− 2VC(k,q + Q) + VA(k,q + Q)]νs
q (16)

varies like ε̃x sin kx + ε̃y sin ky with roughly constant ε̃x

and ε̃y. It yields a splitting into two bands and may
lead to an energy gap in the charge excitations spec-
trum. Another mechanism for a charge gap formation
has been proposed [31,32] recently in the 2D Hubbard
model with t′ = 0 at weak coupling. The band splitting
phase is developed in the region of electron concentra-
tion around half-filling, and is one of the strongest in that
region. This instability dominates when the electron con-
centration n > 1.10 and t′ �= 0 (Fig. 7). The negative
next-nearest-neighbors hopping favors this phase to be
dominant instability at electron doping, but the value of
coupling strength U/t required for the occurrence of this
instability increases with increasing |t′|. The critical tem-
perature of the transition to the band splitting phase de-
creases with increasing electron doping, thus the electron
doping suppresses the tendency towards this phase.

The singlet superconducting dx2−y2 instability
(pp si 0 d+) coincides with the dx2−y2-wave staggered
flux phase at half-filling and t′ = 0 (the discussion
on flux phases appears in the next paragraph). Away
from half-filling the degeneration disappears, and d-wave
superconductivity dominates at low temperatures in cer-
tain regions of electron concentration around half-filling
which depend on the value of t′ �= 0. Even large values
of |t′| do not destroy the dominant low-temperature
behavior of dx2−y2-wave superconductivity at hole doping
(Fig. 4). It is not destroyed also at sufficiently large
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hole doping: for small t′ ≥ −t/6 even at the values of
hole doping δ ∼ 0.3, and for t′ ≤ −t/3 at δ ∼ 0.15 the
d-wave superconductivity dominates at low temperatures.
However, this dominant behavior is destroyed around the
Van Hove filling where other phases appear to dominate.
At small electron doping d-wave superconductivity domi-
nates at low temperatures also, but it is not the leading
instability at n − 1 ≥ 0.1 and t′ �= 0 (see Fig. 7). In
contrast to the pure 2D Hubbard model with t′ = 0, an
electron-hole asymmetry of the d-wave superconducting
phase is manifested in the t-t′ Hubbard model. In this
model with negative t′ the d-wave superconductivity
appears to dominate within wider region of hole doping
in comparison with the electron doping in agreement
with the one-loop renormalization group analysis [33].
In this connection it should be mentioned that the most
examples of discovered high-temperature superconduct-
ing materials are hole-doped systems, and only a few
examples are electron-doped ones.

We observe also particle-hole instabilities with stag-
gered symmetry of d+ wave character in singlet and triplet
channels (ph si/tr q− d+). These states are singlet and
triplet flux phases which are approximately described by
the operators structures

i
∑
kσ

(cos kx − cos ky)c†k+Qσckσ, (17)

i
∑
kσσ′

(cos kx − cos ky)σσσ′c†k+Qσckσ′ , (18)

respectively, where the components of σ are 2 × 2 spin
Pauli matrices. For t′ = 0 critical temperatures of the
transition to the singlet and triplet flux phases are de-
generate, in this case these phases vanish at hole doping
δ ∼ 0.12 in agreement with a mean-field solution of the
t−J model presented in reference [34]. For t′ �= 0 they oc-
cur more easily at the electron concentrations which are
slightly above the Van Hove filling, but the singlet flux
phase disappears for t′ ≤ −t/3. For non-zero values of
the next-nearest-neighbors hopping the critical transition
temperatures of these phases are different, and the triplet
one is higher. Moreover, the triplet analog of flux phase
dominates at low temperatures and t′ = −5t/12 when the
electron concentration is slightly above the Van Hove fill-
ing (see Fig. 8) in contrast to the results of reference [11]
which point out the occurrence of triplet superconduc-
tivity with p-wave symmetry in this region. The triplet
flux phase is also one of the leading instabilities for var-
ious values of next-nearest-neighbors hopping t′ and cer-
tain region of electron concentrations (for example, see
Figs. 3, 5, 6).

The singlet flux state, described by equation (17),
breaks time-reversal, translational, and rotational sym-
metries. This state is a phase of circular charge cur-
rents flowing around the plaquettes of a square lattice
with alternating directions. The authors of reference [34]
found that these currents generate a small magnetic field,
also forming a staggered pattern, and they estimated
the field strength just above the plaquette center to be
around 10 G. They pointed out that muon-spin-rotation
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Fig. 8. Temperature phase diagram of the 2D t-t′ Hubbard
model for t′ = −5t/12, and n = 0.60 (slightly above the
Van Hove filling). Chemical potential varies between µ/t =
−(1.621 ÷ 1.550). Notations are the same as in Figure 3.

experiments may be able to detect this magnetic field.
Recently, the idea of circulating orbital currents (also
called an orbital antiferromagnetism) has been discussed
as promising candidates for a description of the pseudogap
phase of high-Tc cuprates [17,35,36]. There is also a pro-
posal [37] of a circulating current phase, which does not
break translational symmetry. The possible existence of
orbital charge currents has most recently received experi-
mental support. Angle-resolved photoemission with circu-
larly polarized light identified intensity differences for left-
and right-circularly polarized photons in the psedogap
phase of Bi2Sr2CaCu2O8+δ [38]. Also small c-axis oriented
ordered magnetic moments, and an evidence for static al-
ternating magnetic fields below the psedogap temperature
in the underdoped YBa2Cu3O6+x systems were observed
by neutron scattering [39] and muon-spin-rotation [40]
measurements respectively. These data can find a natu-
ral interpretation in terms of planar circulating current
phases [41].

The triplet flux phase, described by equation (18),
breaks translational, rotational and spin-rotational sym-
metries, and does not break time-reversal invariance.
This phase is a state in which spin-up and spin-down
electron currents circulate around the plaquettes in op-
posite directions to produce non-zero spin currents. It
corresponds to an alternating pattern of spin currents.
Similar triplet flux phase (so called spin flux phase or spin
nematic state) has been discussed by Narsesyan and co-
workers [42] by means of a mean-field theory, and more
recently in references [28,43] by means of renormalization
group approaches in the framework of the 2D extended
U -V -J Hubbard model. Another triplet flux phase, which
breaks time-reversal invariance, has been considered by
Nayak [16] as a triplet analog of the density wave or-
der parameter potentially relevant to the cuprates. To our
knowledge a triplet version of the flux phase has not yet
been observed in numerical solutions of the 2D t-t′ Hub-
bard model. In the case of polarized particle-hole pairs
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Fig. 9. Temperature phase diagram of the 2D t-t′ Hub-
bard model for t′ = −5t/12, and n = 0.50 (slightly be-
low the Van Hove filling). Chemical potential varies between
µ/t = −(1.709÷1.713). Notations are the same as in Figure 3.

(it means that we take σz instead of σ in Eq. (18)) the
alternating pattern of spin currents will generate electric
field, which could be, in principle, measurable in experi-
ments. As triplet flux phase (18) does not have anomalous
expectation values for the spin density but, rather, for spin
currents, these excitations do not contribute to the spin-
spin correlation function, therefore spin currents do not
couple to photons, neutrons or nuclear spins [16]. However,
they could be detected with nuclear quadrupole resonance
or two-magnon Raman scattering experiments [16].

At t′ = −5t/12 a few other new instabilities appear to
compete at the Van Hove filling and low temperatures
(Fig. 5) in disagreement with the conclusions of refer-
ence [11] on the occurrence of ferromagnetism. The leading
one is another Pomeranchuk instability in the s+ chan-
nel with g+ = gx4+y4−6x2y2 wave character (ph si 0 s+,
4 node lines in k-space). This phase occurs more easily
when the electron concentration is close to the Van Hove
filling, and it is a leading instability at the Van Hove filling
and the values of electron concentration which are slightly
smaller than the Van Hove filling (Figs. 5, 9). The g+

Pomeranchuk instability appears at sizable values of next-
nearest-neighbors hopping t′ ∼ −t/3 (Fig. 3), but it re-
quests sufficiently large absolute values of t′ (t′ < −t/3)
to be one of the dominant instabilities. In the d− channel
an i-wave (6 node lines in k-space) Pomeranchuk instabil-
ity (ph si 0 d−) appears when electron concentration n is
smaller than the Van Hove filling at t′ = −5t/12 (Fig. 9).
It is a leading one at small values of the electron concen-
tration (Fig. 10), and dominates in the temperature region
T > 0.15t at t = −t′/3 when the electron concentration
is sufficiently below the Van Hove filling. The increase of
electron concentration reduces essentially this phase.

When the electron concentration is decreased below
the Van Hove density at t′ = −5t/12, a particle-hole in-
stability of p-wave symmetry in triplet channel (ph tr 0 p)
dominates (see Fig. 10). The electron operators structure
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Fig. 10. Temperature phase diagram of the 2D t-t′ Hubbard
model for t′ = −5t/12, and n = 0.35 (below the Van Hove
filling). Chemical potential varies between µ/t = −(1.885 ÷
1.963). Notations are the same as in Figure 3.

which describes this magnetic phase is roughly

i
∑
kσσ′

(tMx sin kx + tMy sin ky)σσσ′c†kσckσ′ =

i
2

∑
Rσσ′

(
tMx [c†R+ex,σ − c†R−ex,σ]

+tMy [c†R+ey,σ − c†R−ey,σ]
)

σσσ′cR,σ′ (19)

with ex (ey) being the unit vector along the x- (y-)
axis, R denotes lattice site. The quantity tM is given
by tMx sin kx + tMy sin ky ≈ −1/N

∑
q VF (k,q)νt

q. One can
see from equation (19) that this instability gives rise to
a phase of magnetic currents, the magnetization equals
zero as a result of p-wave character of the instability. The
magnetic currents phase dominates also at very low tem-
peratures and electron concentrations which are slightly
smaller the Van Hove filling for t′ = −5t/12 (Fig. 9), and
in the temperature region T < 0.15t below the Van Hove
density for t′ = −t/3.

In the temperature region T > 0.15t a particle-hole
instability with s∗-wave character (ph tr 0 s+, its order
parameter changes sign close to the Fermi-edge) in the
triplet s+ channel dominates at t′ ≤ −5t/12 and the den-
sity range around the Van Hove filling (see Figs. 5, 8, 9).
It is likely that the order parameter contributions do not
compensate exactly, so that a weak ferromagnetism ap-
pears. When the electron concentration is increased above
the Van Hove filling this instability does not become
weaker, but the dx2−y2 wave Pomeranchuk and the triplet
flux phase instabilities are stronger and dominate at low
temperatures. Then, this s∗-magnetic phase disappears at
sufficiently large values of electron concentration in com-
parison with the Van Hove filling, or smaller |t′|. With
the decrease of electron concentration from the Van Hove
filling this instability becomes weaker and disappears to
be a leading one at small electron density (Fig. 10). From
Figures 5, 8, 9 one can see a reentrant behavior of the
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s∗-magnetic phase in some region of the values U/t: ap-
proaching Tc we get T l

c from low temperatures and T u
c

from high temperatures at the same value of coupling U/t
(T l

c �= T u
c ). This is a result of different behavior of Tc(U/t)

in two regimes. First regime occurs in the region where the
s∗-magnetic instability dominates and the transition from
a paramagnetic state to the s∗-magnetic phase occurs di-
rectly without any intermediate phase, it corresponds to
the temperatures T > 0.15t in Figures 5, 9. In this case the
critical temperature increases with the increase of correla-
tion strength U/t. Therefore electron correlations enhance
the tendency towards the s∗-magnetic instability. Another
regime occurs at the temperatures T < 0.15t, where the
s∗-magnetic phase is not a leading instability and other in-
stabilities dominate. In this situation the critical temper-
ature exhibits an anomalous behavior, it decreases with
increasing the coupling U/t. The s∗-magnetic phase is re-
duced. Since at lower temperatures only a smaller region
in k-space around the Fermi-edge contributes, the sign-
change of the order parameter reduces the effective inter-
action. As the transition to this phase requires some finite
value of the effective interaction at low temperatures, the
correlation strength has to increase rapidly.

We observe also a few other weaker instabilities.
Apart from dx2−y2 wave superconductivity mentioned
above other two superconducting instabilities appear. At
t′ ≤ −t/3 a dxy wave superconducting phase occurs in
the singlet channel sufficiently below the Van Hove filling
(see, for example, Fig. 10), and for larger absolute values
t′ ≤ −5t/12 we observe a g+ wave superconductivity in
the s+ singlet channel below the Van Hove filling (Fig. 9).
All these phases require strong couplings.

The peculiar feature of the superconducting phase in
comparison with the other phases observed by us should
be noted. Away from the Van Hove filling when temper-
ature approaches zero the curves corresponding to super-
conducting phase are flat, whereas the curves correspond-
ing to all other phases observed become steep. Therefore,
at very low temperatures the transition from a param-
agnetic phase to the superconducting one can occur at
very small values of the corresponding effective interaction
in contrast with the transitions to other possible phases
which require some finite values of the effective interac-
tions. One can see also that the critical temperatures of
all phases (excepting antiferromagnetism and s∗-magnetic
phase in certain regions) increase with the increase of cor-
relation strength U/t. Thus, electron correlations enhance
the tendency towards the transition to the phases observed
by us.

4 Conclusions

We have presented a stability analysis of the 2D t-t′
Hubbard model on a square lattice for various values of the
next-nearest-neighbors hopping t′ and electron concentra-
tion. On the basis of the free energy expression, derived by
means of the flow equations method, we have performed
numerical calculation for the various representations un-
der the point group C4ν in order to determine the phase

diagram. A surprising large number of phases has been ob-
served. Some of them have an order parameter with many
nodes in k-space.

For small values of t′ and doping the leading instability
is the antiferromagnetic one. At t′ = 0 antiferromagnetism
disappears at hole doping δ ∼ 0.08 and temperatures
T ∼ 0.1t. This result reproduces the Néel temperatures
in some antiferromagnetic materials. The dx2−y2 wave
Pomeranchuk instability dominates in the region of tem-
perature T > 0.05t at small hole doping (δ < 0.2), and
for negative t′ ≥ −t/3 the Pomeranchuk instability domi-
nates in all temperature region at the electron concentra-
tions around the Van Hove filling. It is the leading insta-
bility at large negative t′ < −t/3 in the region of electron
density above the Van Hove filling and below some dop-
ing; for the value t′ = −5t/12 this value of doping equals
δ ≈ 0.2. The band splitting phase with staggered p-wave
symmetry is developed in the region of electron concen-
tration around half-filling, and is one of the strongest in
that region. This instability dominates when the electron
concentration n > 1.10 and t′ �= 0. The negative next-
nearest-neighbors hopping favors this phase to be domi-
nant instability at electron doping. The dx2−y2-wave su-
perconductivity dominates at low temperatures in certain
regions of electron concentration around half-filling which
depend on the value of t′ �= 0. Even large values of |t′|
do not destroy the dominant low-temperature behavior of
dx2−y2-wave superconductivity at hole doping. It is not de-
stroyed also at sufficiently large hole doping. However, this
dominant behavior is destroyed around the Van Hove fill-
ing where other phases appear to dominate. At small elec-
tron doping d-wave superconductivity dominates at low
temperatures also, but as a result of electron-hole asym-
metry of the 2D t-t′ Hubbard model the d-wave supercon-
ductivity appears to dominate within wider region of hole
doping in comparison with the electron doping for nega-
tive values of t′. Triplet and singlet flux phases, which have
degenerate critical temperatures at t′ = 0, occur more eas-
ily at the electron concentrations which are slightly above
the Van Hove filling for t′ �= 0. For non-zero values of
the next-nearest-neighbors hopping the critical transition
temperatures of these phases are different, and the triplet
one is higher. The triplet analog of flux phase dominates
at low temperatures and t′ = −5t/12 when the electron
concentration is slightly above the Van Hove filling. The
triplet flux phase is also one of the leading instabilities for
various values of next-nearest-neighbors hopping t′ and
certain region of electron concentrations. At t′ < −t/3
and the Van Hove filling the leading instabilities are a g+

wave Pomeranchuk instability and p-wave particle-hole in-
stability in triplet channel (phase of magnetic currents)
at temperatures T < 0.15t, and s∗-magnetic phase for
T > 0.15t. The magnetic currents phase dominates also at
very low temperatures and electron concentrations which
are slightly smaller the Van Hove filling for t′ = −5t/12,
and in the temperature region T < 0.15t below the Van
Hove density for t′ = −t/3. The s∗-magnetic phase is re-
duced strongly at low temperatures and shows a reen-
trant behavior in certain region of U/t. We have found
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other weaker instabilities also. Most instabilities develop
at U > 4t, which are not small values. Therefore, flow
equation calculations beyond second order would be de-
sirable. Nevertheless, as we have found most commonly
discussed types of order, and since some effects obtained
in the intermediate to strong couplings are reproduced
reasonably well by means of the flow equations, we sug-
gest that our calculations give an estimate of the most
important instabilities.

We thank E. Fradkin for his comments and pointing out a
Pomeranchuk instability in nematic Fermi fluid. One of the au-
thors (V.H.) is indebted to the Institut für Theoretische Physik
for the hospitality and nice atmosphere during his stay.
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8. M. Fleck, A.M. Oleś, L. Hedin, Phys. Rev. B 56, 3159

(1997)
9. R. Hlubina, S. Sorella, F. Guinea, Phys. Rev. Lett. 78,

1343 (1997); Phys. Rev. B 59, 9600 (1999)
10. V.Yu. Irkhin, A.A. Katanin, M.I. Katsnelson, Phys. Rev. B

64, 165107 (2001)
11. C. Honerkamp, M. Salmhofer, Phys. Rev. Lett. 87, 187004

(2001); Phys. Rev. B 64, 184516 (2001)
12. C. Honerkamp, M. Salmhofer, T.M. Rice, Eur. Phys. J. B

27, 127 (2002)
13. I. Grote, E. Körding, F. Wegner, J. Low Temp. Phys. 126,

1385 (2002)
14. V. Hankevych, I. Grote, F. Wegner, Phys. Rev. B 66,

094516 (2002)
15. C. Honerkamp, M. Salmhofer, N. Furukawa, T.M. Rice,

Phys. Rev. B 63, 035109 (2001)
16. C. Nayak, Phys. Rev. B 62, 4880 (2000)

17. S. Chakravarty, R.B. Laughlin, D.K. Morr, C. Nayak,
Phys. Rev. B 63, 094503 (2001)

18. D. Vollhardt et al., Adv. Solid State Phys. 35, 383 (1999)
19. F. Wegner, Annalen der Physik (Leipzig) 3, 77 (1994)
20. For a recent review on the flow equation method see

F. Wegner, Physics Reports 348, 77 (2001)
21. I. Grote, Ph.D. thesis, University of Heidelberg (2002)
22. C. Herring, in Magnetism, Vol. 4, edited by G.T. Rao,

H. Suhl (Accademic Press, New York, 1966), p. 1
23. J. Friedel, in The Physics of Metals, edited by J.M. Ziman

(Cambridge University Press, Cambridge, 1969), p. 340
24. N.F. Mott, Metal-Insulator Transition (Taylor & Francis,

London, 1990)
25. For a review on normal-state properties of high-Tc cuprates

see M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys.
70, 1039 (1998)

26. See, for example, P. Fulde, Electron Correlations in
Molecules and Solids, Springer Ser. Solid-State Sci.,
Vol. 100 (Springer, Berlin, Heidelberg, 1991), Chap. 14

27. F. Wegner (unpublished)
28. A.P. Kampf, A.A. Katanin, cond-mat/0204542
29. V. Oganesyan, S.A. Kivelson, E. Fradkin, Phys. Rev. B

64, 195109 (2001)
30. S.A. Kivelson, E. Fradkin, V.J. Emery, Nature 393, 550

(1998)
31. S. Moukouri, M. Jarrell, Phys. Rev. Lett. 87, 167010

(2001)
32. B. Kyung, J.S. Landry, D. Poulin, A.-M. Tremblay,

cond-mat/0112273

33. C. Honerkamp, Eur. Phys. J. B 21, 81 (2001)
34. T.C. Hsu, J.B. Marston, I. Affleck, Phys. Rev. B 43, 2866

(1991)
35. S. Chakravarty, H.-Y. Kee, C. Nayak, Int. J. Mod. Phys.

15, 2901 (2001)
36. P.A. Lee, J. Phys. Chem. Solids 63, 2149 (2002)
37. C.M. Varma, Phys. Rev. Lett. 83, 3538 (1999)
38. A. Kaminski et al., Nature 416, 610 (2002)
39. H.A. Mook et al., Phys. Rev. B 64, 012502 (2001); 66,

144513 (2002)
40. R.I. Miller et al., Phys. Rev. Lett. 88, 137002 (2002)
41. For a theoretical discussion of the experiments, see refer-

ences [34,35] and C.M. Varma, Phys. Rev. B 61, R3804
(2000)

42. A.A. Narsesyan, G.I. Japaridze, I.G. Kimeridze, J. Phys.
Cond. Matt. 3, 3353 (1991)

43. B. Binz, D. Baeriswyl, B. Douçot, Eur. Phys. J. B 25, 69
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